gOcto,
Più studio l'IA decentralizzata, più un gap continua a disturbarmi:
"Tutti parlano di calcolo, accesso ai modelli, velocità di inferenza... Ma nessuno parla di dove proviene il dato. O chi lo ha curato."
Nell'apprendimento automatico, spazzatura in = spazzatura fuori.
Ma la maggior parte delle architetture crypto-AI continua a trattare i dati come questo input invisibile.
Non c'è responsabilità, nessuna provenienza, nessuna ricompensa.
Questo è ciò che rende Datanets di @OpenledgerHQ uno dei primitivi più importanti nello spazio.
#Datanets sono reti decentralizzate specifiche per dominio dove i contributori curano dataset strutturati per l'addestramento dei modelli #AI.
Ogni punto dati è:
▸ Validato
▸ Attribuito
▸ Registrato on-chain
▸ Legato ai futuri output del modello tramite Proof of Attribution (#POA)
È il livello di coordinamento mancante:
→ Strutturato abbastanza per i modelli
→ Trasparente abbastanza per la fiducia
→ Incentivato abbastanza per i veri contributori
In un mondo di #LLM che mangiano internet, Datanets pongono la domanda giusta:
"E se i dati di addestramento appartenessero alla comunità?"

The deeper I dive into AI x Crypto, the more one question keeps resurfacing:
“We’ve built a world where compute gets paid…But who rewards the ones who train the brain?”
@OpenledgerHQ offers a powerful answer.
It’s not just another AI infra play.
It’s a full Layer-2 chain built on OP Stack + #EigenDA, optimized not for hype, but for economic coordination between data, models, and agents.
Here’s what makes it unique 👇
1/ It starts with the data.
@OpenledgerHQ introduces #Datanets - decentralized networks of domain-specific datasets contributed by users.
Each data point is:
▸ Attributed on-chain
▸ Enriched, categorized
▸ Linked to the model outputs it influences
▸ Rewarded based on impact
It’s like turning HuggingFace datasets into tokenized public goods, with verifiable history.
2/ Then comes the model layer.
@OpenledgerHQ has built #ModelFactory, a GUI-based fine-tuning platform where:
▸ Anyone can fine-tune LLMs like LLaMA, Mistral, DeepSeek
▸ No code or APIs needed
▸ Models are trained using permissioned, verified data
▸ Attribution stays intact during fine-tuning
▸ You can chat with the model and view its data citations via RAG Attribution
This makes building and trusting AI models easier, more secure, and transparent.
3/ Then serving at scale.
With #OpenLoRA, you can serve 1000s of LoRA-based models on one GPU.
It dynamically loads adapters, merges them in real time, and runs inference with quantization + token streaming.
Perfect for:
▸ Customized agents
▸ Fast, low-cost serving
▸ Enterprise-scale deployments
It’s cost-efficient, modular, and actually works.
4/ So why does OpenLedger matter?
Because AI is becoming modular, agentic, and decentralized.
But we still lack accountability and fairness in who gets paid.
OpenLedger fixes that.
▸ You run a node? You get paid for clean data
▸ You fine-tune a model? You get cited + rewarded
▸ Your agent helps users? You stake + earn
▸ Your output is wrong? You lose reputation
It’s trust via structure, not vibes.
✅ And yes, it’s live.
Testnet is up:
– Log in with social
– Claim daily rewards
– Explore the Datanets, ModelFactory, RAG
– Possibly earn points or qualify for future airdrops
Already listed on @KaitoAI’s Leaderboard + @cookiedotfun’s #SNAP.
If you are interested in about real #AI value capture, not just speculative noise OpenLedger is worth a closer look.


12.444
104
Il contenuto di questa pagina è fornito da terze parti. Salvo diversa indicazione, OKX non è l'autore degli articoli citati e non rivendica alcun copyright sui materiali. Il contenuto è fornito solo a scopo informativo e non rappresenta le opinioni di OKX. Non intende essere un'approvazione di alcun tipo e non deve essere considerato un consiglio di investimento o una sollecitazione all'acquisto o alla vendita di asset digitali. Nella misura in cui l'IA generativa viene utilizzata per fornire riepiloghi o altre informazioni, tale contenuto generato dall'IA potrebbe essere impreciso o incoerente. Leggi l'articolo collegato per ulteriori dettagli e informazioni. OKX non è responsabile per i contenuti ospitati su siti di terze parti. Gli holding di asset digitali, tra cui stablecoin e NFT, comportano un elevato grado di rischio e possono fluttuare notevolmente. Dovresti valutare attentamente se effettuare il trading o detenere asset digitali è adatto a te alla luce della tua situazione finanziaria.