gOcto,
Ju mer jag studerar decentraliserad AI, desto mer stör en lucka mig:
"Alla pratar om beräkning, modellåtkomst, inferenshastighet ... Men ingen pratar om var datan kommer ifrån. Eller vem som kurerade den."
I maskininlärning är skräp in = skräp ut.
Men de flesta krypto-AI-arkitekturer behandlar fortfarande data som denna osynliga indata.
Det finns inget ansvar, ingen härkomst, ingen belöning.
Det är det som gör Datanets by @OpenledgerHQ till en av de viktigaste primitiverna i rymden.
#Datanets är domänspecifika, decentraliserade nätverk där deltagare kurerar strukturerade datamängder för träning #AI modeller.
Varje datapunkt är:
▸ Validerad
▸ Tillskriven
▸ Inloggad på kedjan
▸ Knuten till framtida modellutdata via Proof of Attribution (#POA)
Det är det saknade samordningslagret:
→ Strukturerad nog för modeller
→ Tillräckligt transparent för förtroende
→ Tillräckligt med incitament för riktiga bidragsgivare
I en värld av #LLMs som äter internet ställer datanät rätt fråga:
"Tänk om träningsdatan tillhörde samhället?"

The deeper I dive into AI x Crypto, the more one question keeps resurfacing:
“We’ve built a world where compute gets paid…But who rewards the ones who train the brain?”
@OpenledgerHQ offers a powerful answer.
It’s not just another AI infra play.
It’s a full Layer-2 chain built on OP Stack + #EigenDA, optimized not for hype, but for economic coordination between data, models, and agents.
Here’s what makes it unique 👇
1/ It starts with the data.
@OpenledgerHQ introduces #Datanets - decentralized networks of domain-specific datasets contributed by users.
Each data point is:
▸ Attributed on-chain
▸ Enriched, categorized
▸ Linked to the model outputs it influences
▸ Rewarded based on impact
It’s like turning HuggingFace datasets into tokenized public goods, with verifiable history.
2/ Then comes the model layer.
@OpenledgerHQ has built #ModelFactory, a GUI-based fine-tuning platform where:
▸ Anyone can fine-tune LLMs like LLaMA, Mistral, DeepSeek
▸ No code or APIs needed
▸ Models are trained using permissioned, verified data
▸ Attribution stays intact during fine-tuning
▸ You can chat with the model and view its data citations via RAG Attribution
This makes building and trusting AI models easier, more secure, and transparent.
3/ Then serving at scale.
With #OpenLoRA, you can serve 1000s of LoRA-based models on one GPU.
It dynamically loads adapters, merges them in real time, and runs inference with quantization + token streaming.
Perfect for:
▸ Customized agents
▸ Fast, low-cost serving
▸ Enterprise-scale deployments
It’s cost-efficient, modular, and actually works.
4/ So why does OpenLedger matter?
Because AI is becoming modular, agentic, and decentralized.
But we still lack accountability and fairness in who gets paid.
OpenLedger fixes that.
▸ You run a node? You get paid for clean data
▸ You fine-tune a model? You get cited + rewarded
▸ Your agent helps users? You stake + earn
▸ Your output is wrong? You lose reputation
It’s trust via structure, not vibes.
✅ And yes, it’s live.
Testnet is up:
– Log in with social
– Claim daily rewards
– Explore the Datanets, ModelFactory, RAG
– Possibly earn points or qualify for future airdrops
Already listed on @KaitoAI’s Leaderboard + @cookiedotfun’s #SNAP.
If you are interested in about real #AI value capture, not just speculative noise OpenLedger is worth a closer look.


12,46 tn
104
Innehållet på den här sidan tillhandahålls av tredje part. Om inte annat anges är OKX inte författare till den eller de artiklar som citeras och hämtar inte någon upphovsrätt till materialet. Innehållet tillhandahålls endast i informationssyfte och representerar inte OKX:s åsikter. Det är inte avsett att vara ett godkännande av något slag och bör inte betraktas som investeringsrådgivning eller en uppmaning att köpa eller sälja digitala tillgångar. I den mån generativ AI används för att tillhandahålla sammanfattningar eller annan information kan sådant AI-genererat innehåll vara felaktigt eller inkonsekvent. Läs den länkade artikeln för mer detaljer och information. OKX ansvarar inte för innehåll som finns på tredje parts webbplatser. Innehav av digitala tillgångar, inklusive stabila kryptovalutor och NFT:er, innebär en hög grad av risk och kan fluktuera kraftigt. Du bör noga överväga om handel med eller innehav av digitala tillgångar är lämpligt för dig mot bakgrund av din ekonomiska situation.